Multiwavelength Monitoring of the Supermassive Black Hole in the Galactic Center

F.K. Baganoff¹

```
M.W. Bautz<sup>1</sup>, G.R. Ricker<sup>1</sup>, W.N. Brandt<sup>2</sup>, G. Chartas<sup>2</sup>, E.D. Feigelson<sup>2</sup>, G.P. Garmire<sup>2</sup>, M. Morris<sup>3</sup>, E.E. Becklin<sup>3</sup>, A.M. Ghez<sup>3</sup>, S.D. Hornstein<sup>3</sup>, A.M. Tanner<sup>3</sup>, A.S. Cotera<sup>4</sup>, P.M. Hinz<sup>4</sup>, W.F. Hoffmann<sup>4</sup>, M.R. Meyer<sup>4</sup>, A. Eckart<sup>5</sup>, R. Genzel<sup>6</sup>, J.-H. Zhao<sup>7</sup>, R.M. Herrnstein<sup>7</sup>, J.L. Hora<sup>7</sup>, J.-P. Macquart<sup>8</sup>, Y. Maeda<sup>9</sup>, R.J. Sault<sup>10</sup>, G.B. Taylor<sup>11</sup>, F. Walter<sup>11</sup>
```

```
<sup>1</sup>MIT, <sup>2</sup>UCLA, <sup>3</sup>Penn State, <sup>4</sup>Steward Obs., <sup>5</sup>U. Cologne, <sup>6</sup>MPE, <sup>7</sup>CfA, <sup>8</sup>U. Groningen, <sup>9</sup>ISAS, <sup>10</sup>ATNF, <sup>11</sup>NRAO
```

Research Issues

- Supermassive black hole at the Galactic Center:
 Sagittarius A*
 - Accretion physics
 - Emission mechanism of rapid X-ray/IR flares
 - Evidence for a bipolar outflow
 - Evidence for a possible X-ray jet
- High-mass star formation history in the Nuclear Bulge
- Supernova Remnants
- Colliding stellar winds and other interactions
- Origin of new X-ray structures in the field

X-ray View of the Galactic Center

Wang, Gotthelf, and Lang (2002)

Zooming into the Galactic Center in X-rays

Animation Credit: NASA/CXC/SAO

Chandra Galactic Center Deep Field

Chandra Galactic Center Deep Field

Chandra Galactic Center Deep Field

8.4 x 8.4 arcminutes

X-ray Point Sources

- 2287 sources have been resolved.
- 278 are of the foreground in the galactic center.
- About 40 are background AGN
- Sources have $L_X=10^{30}$ 10^{33} erg s⁻¹ (2-8 keV)

Muno et al. (2003)

Spatial Distribution

- Consistent with an isothermal sphere (1/R²)
- Similar to spatial density of bright infrared stars in Nuclear Bulge
- Could provide important information about star formation history

X-ray Emission-Line Equivalent-Width Maps

Galactic Center Bipolar Lobes

- Lobe material distributed differently than "hot" (6.7 keV) and fluorescent "neutral" (6.4 keV) Fe
- Emission grows in intensity and size perpendicular to Galactic plane toward lower energies
- $T_e \sim 2 \times 10^7 \text{ K}$
- $n_e \sim 1 \text{ cm}^{-3}$
- Separate lumps may indicate separate episodes of activity spaced by 2000–5000 yr
- Timescale for outer portions to flow from Sgr A*: 10⁴ yr (v_{out}/1000 km s⁻¹)
- Mass per blob ~ 1 M_{sun}
- Origin: Sgr A* or star formation in central parsec?

X-ray Features in the Vicinity of the Sgr A Radio Complex

Radio Image of the Sgr A West Minispiral

Radio Image of Sgr A West and Circumnuclear Disk

X-ray Image and 6 cm Contours of Sgr A West

2000 October 26-27

OBSID 1561 - 2000:10:26:22:23:32.8 (UT)

Jet Models - Markoff et al. 2001

logis v (GHz)

Some models predict large mm or IR variations during X-ray flares, while others do

ADAF Model – Narayan 2002

Observatories Participating in Sgr A* Monitoring Campaign

- Chandra (12–62 nm)
- Keck (2 & 10 μm)
- Very Large Telescope (3–5 μm)
- Magellan (10 μm)
- Submillimeter Array (1.3 mm)
- Caltech OVRO Millimeter Array (3 mm)
- Australia Telescope Compact Array (3 mm)
- Very Large Baseline Array (7 mm)
- Very Large Array (7mm, 1.3 cm, 2 cm)

2002 May 22-23 - Orbit 1, Part 1

OBSID 2943 - 2002:05:22:23:27:02.7 (UT)

2002 May 24 – Orbit 1, Part 2

OBSID 3663 - 2002:05:24:12:17:02.9 (UT)

2002 May 25-27 – Orbit 2

OBSID 3392 - 2002:05:25:15:39:28.3 (UT)

2002 June 3-4 - Orbit 5

OBSID 3665 - 2002:06:03:01:46:30.4 (UT)

Sgr A* Multiwavlength Monitoring Campaign

Three Large X-ray Flares from Sgr A*

Very Long Baseline Array – 7 mm

- •No significant flux variability detected
- •Upper limit about 30%
- •No extended structure appeared
- •Upper limit about 10 mJy

Integrated X-ray Spectrum of Sgr A* During Flares

Model: Absorbed, Dust-Scattered Power Law

$$N_H = 6.0 \times 10^{22} \text{ cm}^{-2}$$

 $\Gamma = 1.3 (0.9-1.8)$

$$F_X = 1.6 \text{ x } 10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}$$

 $L_X = 2.0 \text{ x } 10^{34} \text{ erg s}^{-1}$
 $D = 8 \text{ kpc}$

Integrated X-ray Spectrum of Sgr A* in Quiescence

Model: Absorbed, Dust-Scattered, Power Law Plus Line

$$N_H = 5.9 \times 10^{22} \text{ cm}^{-2}$$

 $\Gamma = 2.4 (2.3-2.6)$

$$E_{Fe}$$
 = 6.59 (6.54-6.64) keV
Line is narrow and NIE

$$F_X = 1.8 \times 10^{-13} \text{ erg cm}^{-2} \text{ s}^{-1}$$

 $L_X = 1.4 \times 10^{33} \text{ erg s}^{-1}$
 $D = 8 \text{ kpc}$

$$/ = 14.0$$

X-ray Emission at Sgr A* is Extended

- Intrinsic size of emission at Sgr A* is about 1.4 arcsec (FWHM)
- Consistent with Bondi accretion radius for a 3x10⁶ solar-mass black hole
- Is emission from a hot accretion flow or from stars in the central cluster?

Summary - Sgr A* Flares

- Chandra observed Sgr A* for 139 hr over a two-week period in late May to early June 2002
- 3 X-ray flares with amplitudes >10x detected in a 28-hr period!
- 4 X-ray flares with amplitudes ~5x detected in addition
- "Factor-of-10" flares occur about once every other day, on average
- Typical flare duration is about 1 hr (0.5-4 hr)
- Frequent, large-amplitude, short-duration flaring behavior of Sgr A* is unique among supermassive black holes!
- Probably selection effect: flares too faint to detect in other galaxies
- Behavior inconsistent with X-ray binaries and not seen from any of the other >2,300 X-ray point sources in the field
- **Strong evidence** that X-ray flaring source **is** the Milky Way's central, supermassive black hole!

Summary – Sgr A* Flares (continued)

- No factor-of-2 or larger flares seen at longer wavelengths
- Some evidence for variations at tens of percent level in millimeter band on timescales of hours to days seen – upper limit currently about 50%
- Efforts to improved calibration of millimeter data underway

Keck L' (3.8 μm) Lightcurves of Sgr A*

Spectral Energy Distribution of Sgr A*

Spectral model: Yuan et al. 2003; L' fluxes: Ghez et al. 2003

Spectrum of Possible Jet-like Feature Near Sgr A*

Absorbed Power-law Model – Dust Corrected

Gamma = 1.8N_H = $8.0 \times 10^{22} \text{ cm}^{-2}$

 $L_{\rm X} = 3.4 \text{ x } 10^{32} \text{ erg s}^{-1}$

Summary – X-ray Jet

- Discovery of an apparent X-ray jet from the Milky Way's central black hole
- Not seen in other wavebands
- Jet is 1 light-year long and located 1.5 lightyears from the black hole
- Jet aligned with large-scale bipolar X-ray lobes
- Lobes may be due to past ejections or outflows from the supermassive black hole
- Suggests we are seeing "fingerprints" of activity over the past few thousand years
- X-ray flares tell us about the current activity

Conclusions

- Rapid, large-amplitude X-ray flares are not accompanied by significant radio and mm-band variations
- Sgr A* has now been detected in IR, and is variable on timescales of ~1 hr
- Future efforts
 - Continue coordinated multiwavelength monitoring to detect simultaneous X-ray and IR flares
 - Identify emission mechanism and constrain physical parameters (e.g., mag field strength, Lorentz factor, particle density near event horizon)
 - Push multiwavelength monitoring to sub-mm and MIR/FIR